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Abstract
This study investigates the potential of methyl eugenol (ME), a compound found in the essential oils of various plants, to inhibit 
oxidative stress and its impact on diseases associated with this process. ME has been shown to possess antioxidant properties 
and antiproliferative activity in several cancers. It also demonstrates neuroprotective potential in conditions such as Alzheimer’s 
disease and ischemic brain injury. The mechanism of action involves the activation of the nuclear factor erythroid 2-related factor 
2, which facilitates the transcription of antioxidant genes and modulation of pathways such as AMP-activated protein kinase/
glycogen synthase kinase 3 beta, thereby reducing the production of reactive oxygen species and pro-inflammatory cytokines. 
However, research has identified potential toxicological risks associated with ME, including hepatotoxicity and changes in the 
gut microbiota. These findings highlight the need for caution when considering prolonged exposure to this compound.
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Introduction
The potential role of natural products in alleviating disease is an 
important area of research, particularly with respect to compounds 
such as methyl eugenol (ME). It is imperative that studies address 
the limitations of previous research and elucidate the potential con-
tributions of such compounds to therapeutic advances.1,2 Oxidative 
stress, defined as an imbalance between the production of reactive 
oxygen species (ROS) and the body’s antioxidant defenses, repre-
sents a significant health risk. ROS have the potential to damage 
critical cellular components, including DNA, proteins, and lipids, 
ultimately leading to genetic mutations and cellular dysfunction.3–5 
Additionally, ROS can activate various signaling pathways that 
promote cell proliferation and survival, complicating the overall 
relationship between oxidative stress and cancer, which remains 
incompletely understood and warrants further investigation.

Alzheimer’s disease (AD), a progressive neurodegenerative 
disorder characterized by memory loss, cognitive decline, and be-
havioral changes, has been implicated in oxidative stress as a con-
tributing factor in its development and progression. The increased 
production of ROS in the brain, combined with decreased antioxi-
dant defenses, can lead to neuronal oxidative damage. This process 
facilitates the accumulation of toxic protein aggregates, including 
beta-amyloid plaques and tau tangles, which are characteristic of 
AD pathology.6,7

Natural compounds represent a promising avenue for mitigating 
oxidative damage, with ME emerging as a compound of particu-
lar interest. ME is a naturally occurring organic compound with 
the chemical formula C11H14O2, produced by the secondary me-
tabolism of aromatic and medicinal plants. It is a phenylpropene 
derivative and is abundant in the essential oils of several plant gen-
era and families, such as Poaceae, Cupressaceae, Euphorbiaceae, 
Apiaceae, Lamiaceae, Zingiberaceae, and Myrtaceae. ME is as-
sociated with numerous potential biological activities that may be 
of importance for human health.8–12 The objective of this review 
was to explore these activities with an emphasis on their implica-
tions for the pharmaceutical industry, illustrating the compound’s 
prospective role in addressing oxidative stress-related conditions.

Occurrence and biosynthesis
ME is a compound found in a number of different plant families, 
with its presence and concentration varying widely both within 
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each species and between families. The families with the highest 
occurrence of ME, in descending order, are as follows: Asteraceae 
(47 species), Apiaceae (44 species), Lamiaceae (38 species), Lau-
raceae (34 species), Aristolochiaceae (32 species), Rutaceae (23 
species), Myrtaceae (20 species), Poaceae (12 species), Cupres-
saceae (10 species), Euphorbiaceae (10 species), and Zingiberace-
ae (10 species). A number of species have been found to contain 
high levels of ME, often exceeding 90%. These include Croton 
malambo (Euphorbiaceae), Cinnamomum chordatum (Lauraceae), 
Melaleuca species (Myrtaceae), Pepper racemosa (Myrtaceae), 
Piper divaricatum (Piperaceae), and Clusena anisata (Rutaceae). 
In addition, 68 species have been found to contain between 20% 
and 90% ME in their essential oils. These plant species represent a 
significant source of ME.13

The biosynthetic pathway of ME begins with the amino acid 
phenylalanine, which is converted to cinnamic acid. This conver-
sion is catalyzed by the enzyme phenylalanine ammonia-lyase. 
Cinnamic acid is then converted to coumaric acid by the enzyme 
cinnamate 4-hydroxylase. The next step in the biosynthesis is the 
conversion of coumaric acid to caffeic acid, catalyzed by the en-
zyme coumarate 3-hydroxylase. Caffeic acid is further converted 
to ferulic acid by the action of caffeate O-methyltransferase. The 
final steps of biosynthesis involve the conversion of ferulic acid 
to eugenol and subsequent methylation to form ME. Ferulic acid 
is first converted to coniferyl alcohol by the enzymes cinnamoyl-
CoA reductase and cinnamyl alcohol dehydrogenase. Coniferyl al-
cohol is then converted to eugenol by the enzyme coniferyl alcohol 
acetyltransferase. Finally, eugenol is methylated to produce ME, 
and this methylation reaction is catalyzed by eugenol O-methyl-
transferase.13,14 In Figure 1, we can observe a summarized repre-
sentation of the biosynthesis of ME.13

Inhibition of oxidative stress
Oxidative stress is a term used to describe an imbalance between 
the production of ROS and the ability of the body’s antioxidant 
defense mechanisms to neutralize and remove these harmful mol-
ecules. ROS include free radicals, such as superoxide anion (O2-), 
hydroxyl radical (OH), and non-radical molecules like hydrogen 
peroxide (H2O2). In this context, the antioxidant capacity of ME 
has the potential to inhibit the damage caused by these relative 
species.15 Recent studies have demonstrated the ability of ME 

to inhibit the proliferation of diseases related to oxidative stress. 
For example, renal oxidative damage can be inhibited through the 
modulation of the AMP-activated protein kinase (AMPK)/glyco-
gen synthase kinase 3 beta (GSK3β) axis to regulate the cytoplas-
mic-nuclear translocation of nuclear factor erythroid 2-related fac-
tor 2 (Nrf2), which may result in nuclear retention of Nrf2, thereby 
increasing transcription of target antioxidant genes that protect 
the kidney from oxidative damage.16 Other authors also report the 
potential for free radical stabilization by ME.17 In Figure 2, we 
present a schematic representation of the inhibition of oxidative 
stress by ME.18

In addition, ME has demonstrated a robust antioxidant capacity 
across various biological systems, primarily by modulating cellular 
responses to oxidative stress. One of the key mechanisms by which 
ME exerts its effects is through the activation of Nrf2, a central 
regulator of the antioxidant response. ME activates Nrf2 in a dose-
dependent manner, facilitating its translocation to the nucleus, 
where it binds to antioxidant response elements in the promoter re-
gions of several protective genes. This leads to the upregulation of 
genes involved in cellular antioxidant defense, such as glutamate 
cysteine ligase modifier subunit and glutathione S-transferase A1, 
which are essential for maintaining redox homeostasis and neu-
tralizing ROS. In addition, ME stabilizes Nrf2 by preventing its 
degradation mediated by Keap1, allowing Nrf2 to accumulate in 
the cytoplasm and translocate to the nucleus. This process has 
been confirmed by studies showing enhanced nuclear retention of 
Nrf2 following ME treatment. ME also reduces intracellular ROS 
levels, protecting cells from oxidative damage induced by agents 
like H2O2. This protective effect has been observed in several cell 
lines, including HEK 293 and NIH 3T3 fibroblasts, where ME 
pretreatment significantly enhanced cellular resistance to H2O2-
induced damage. Furthermore, ME activates the AMPK/GSK3β 
pathway, a molecular signaling cascade that modulates Nrf2 func-
tion. ME binds with high affinity to AMPK, promoting its activa-
tion, which leads to the phosphorylation of GSK3β and inhibition 
of its activity. This blocks Nrf2’s nuclear export signal, facilitating 
prolonged retention of Nrf2 in the nucleus. The antioxidant ef-
fects of ME have also been demonstrated in ischemia/reperfusion 
injury models in the kidneys and intestines, where ME reduced 
oxidative stress markers like malondialdehyde and lactate dehy-
drogenase and modulated inflammatory cytokines such as tumor 
necrosis factor-alpha (TNF-α) and interleukin (IL)-6. Additionally, 

Fig. 1. Potential summary biosynthetic pathway of phenylpropanopid methyl eugenol (PAL). CAD, cinnamyl-alcohol dehydrogenase; CCR, cinnamoyl-CoA 
reductase; CFAT, coniferyl alcohol acetyltransferase; EGS, eugenol synthas; EMOT, eugenol O-methyltransferase. Adapted from Tan et al.13
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ME protected against apoptosis and improved tissue integrity, pro-
viding significant protection against oxidative damage. In tumor 
promotion models, ME reduced TPA (12-O-tetradecanoylphorbol-
13-acetate)-induced cell proliferation, demonstrating its ability to 
attenuate oxidative damage caused by TPA, including lipid per-
oxidation, while enhancing the activity of antioxidant enzymes 
such as catalase, glutathione reductase, and superoxide dismutase 
(SOD). In summary, ME exerts its protective effects against oxida-
tive stress through a multifaceted approach, including activation 
and stabilization of Nrf2, its nuclear translocation, and modulation 
of essential redox signaling pathways, making it a promising thera-
peutic agent for conditions related to oxidative stress.16,17,19–21

Antiproliferative
Previous studies have reported the effectiveness of eugenol and its 
derivatives against several cancer types, including leukemia, gas-
tric cancer, colon cancer, prostate cancer, breast cancer, lung can-
cer, colorectal cancer, skin cancer, and cervical cancer.22 Eugenol 
has been found to inhibit tumor proliferation and formation, as 
well as genotoxic effects in different cancer cells.23 One study 
found that ME exhibits significant anticancer activity against ret-
inoblastoma RB355 cells by inducing autophagy and modulating 
the expression of the m-TOR/PI3K/Akt signaling pathway, which 

is considered a critical target for the development of anticancer 
systemic therapies.24 In another study, the combination of ME with 
myricetin was found to synergistically enhance the inhibition of 
cancer cell growth by inducing strong apoptosis, upregulating cas-
pase-3 activity, and arresting cells in the G0/G1 phase of the cell 
cycle in HeLa immortal cervical cell lines.25 Several studies have 
also reported the effectiveness of methyl eugenol-rich essential 
oils against various cancer types. For example, treatment of Oci-
mum tenuiflorum essential oil significantly inhibited cell viability 
and metastasis in gastric cancer cells, leading to cell death.26

The anticancer potential of ME, a plant-derived phenylpropene, 
was investigated in a study conducted on retinoblastoma RB355 
cells. ME demonstrated a dose-dependent cytotoxic effect, with 
an IC50 value of 50 µM, resulting in a reduction in cell viability 
in these cancer cells. Furthermore, the compound induced G2/M 
phase arrest in the cell cycle, indicating that ME may interfere 
with cell proliferation. Autophagy was also triggered in a dose-
dependent manner, indicating that ME not only inhibits cell growth 
but may also initiate cell self-destruction processes. The study ad-
ditionally examined the molecular mechanisms underlying ME’s 
anticancer activity, with a particular focus on the mTOR/PI3K/Akt 
signaling pathway. Western blot analysis demonstrated that ME 
treatment resulted in a concentration-dependent downregulation of 
key proteins involved in this pathway, including mTOR, phospho-

Fig. 2. Excessive reactive nitrogen species (RNS) and reactive oxygen species (ROS), such as H2O2 (hydrogen peroxide), HO− (hydroxyl radical), HOO− (hi-
droperoxil), NO− (nitric oxide radical), NO2− (nitrogen dioxide radical), O2− (superoxide anion radical), and ONOO- (peroxynitrite anion), play a critical 
role in oxidative stress associated with aging and age-related diseases. The accumulation of ROS causes messenger RNA (mRNA) damage, as well as lipid 
and protein oxidation, reduces mitochondrial function, and increases oxidative stress, contributing to the development of diseases such as dementia and 
cancer. Adapted from Tan et al.18
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rylated mTOR, PI3K, and Akt. This suggests that ME exerts its an-
ticancer effects by targeting and modulating the mTOR/PI3K/Akt 
signaling pathway, which is essential for regulating cell growth, 
survival, and autophagy. In conclusion, these findings suggest that 
ME may have the potential as an effective anticancer agent against 
retinoblastoma. Further in-depth in vivo studies are warranted to 
explore its therapeutic potential.24

Neuroprotection
AD and Parkinson’s disease are neurodegenerative disorders af-
fecting the elderly. Alzheimer’s causes cognitive decline, while 
Parkinson’s affects the motor system due to dopamine cell loss.27 
There is no cure for these conditions, and treatments focus on 
symptom management. ROS have been implicated in neurode-
generation. Excessive ROS production can cause oxidative stress, 
leading to damage of cellular components and disruption of normal 
neuronal function. This correlation highlights the importance of an-
tioxidant defenses in mitigating neurodegenerative processes.28,29 
Several studies assessing the neuroprotective properties of various 
essential oils have denoted their neuroprotective action.28,29 A phe-
nolic analog of eugenol, i.e., ME (4-allyl-1, 2-dimethoxybenzene), 
is a component of many essential oils, including, but not limited 
to, clove and anise, and possesses potent neuroprotective poten-
tials. The literature includes several reports suggesting the acetyl-
cholinesterase inhibitory potentials of the phenylpropanoids ME, 
eugenol, and β-elemene. However, their exact mechanisms have 
not been fully understood. In one study, Banpure and Chopade 
conducted molecular docking analysis of several phytoconstitu-

ents, including ME, against 11 different Alzheimer targets, such as 
acetylcholinesterase and butyrylcholinesterase, including 4TPK, 
4AQD, 6EP4, 1H22, 4EY5, 2XQF, 6O4X, 6O4W, 4BDT, 6EQQ, 
and 1B41. ME demonstrated good binding affinities against these 
selected targets.27 One study concluded that exposure to ME re-
duced tert-butyl hydroperoxide-induced cytotoxicity, decreased 
ROS production, and increased SOD and glutathione levels.30 This 
was linked to the upregulation of glutamate-cysteine ligase cata-
lytic/modifier, heme oxygenase-1, and NAD (P) H: quinone oxi-
doreductase, which relied on Nrf2 induction, inhibition of Keap1 
expression, and enhanced antioxidant response element activity.30 
Meena et al.31 discovered that the extract of Ocimum sanctum has 
inhibitory effects on α-synuclein aggregation, a target for prevent-
ing Parkinson’s disease. They conducted molecular docking of the 
extract against the α-synuclein target (PDB: 1XQ8) and found a 
docking score of −7.2 Kcal/M−1.31 The ME from the extract was 
found to interact with Lys10, Ala17, Lys21, and Lys80 through 
hydrogen bonding.31 In Figure 3, we present a summary of the 
neuroprotective potential of ME.

ME exerts its neuroprotective effects against ischemic injury 
through a multifaceted mechanism, primarily by modulating 
oxidative stress and inflammation. In an in vivo model of mid-
dle cerebral artery occlusion and reperfusion, ME was observed 
to significantly reduce cerebral infarction and edema, indicating 
its protective capacity.32 This effect is largely attributed to ME’s 
ability to scavenge ROS and enhance antioxidant defenses. The 
administration of ME resulted in a reduction in superoxide anion 
generation and a decrease in ROS levels in both ischemic brain 
tissue and cultured cells subjected to oxygen-glucose depriva-

Fig. 3. Schematic representation of methyl eugenol as an inhibitor of the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in the 
cholinergic system. 
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tion and reoxygenation. Furthermore, increased activities of key 
antioxidant enzymes, such as SOD (Mn-SOD) and catalase, were 
observed, playing a critical role in mitigating oxidative damage. 
ME also demonstrated the capacity to inhibit nitric oxide produc-
tion and downregulate the expression of inducible nitric oxide 
synthase in both brain tissue and glial cells, thereby alleviating 
oxidative damage. With regard to the inflammatory response, ME 
suppressed the production of pro-inflammatory cytokines, includ-
ing IL-1β and TNF-α, which are commonly elevated in ischemic 
conditions. ME reduced the mRNA and protein expression of these 
cytokines in ischemic brain lesions and in immunostimulated glial 
cells. Concurrently, ME facilitated the expression of anti-inflam-
matory cytokines, including IL-10 and transforming growth fac-
tor beta, reinforcing its anti-inflammatory efficacy. Furthermore, 
ME reduced the activation of caspase-3, an executioner of apop-
tosis, thereby protecting neurons from cell death. In conclusion, 
the neuroprotective effects of ME can be attributed to a combina-
tion of direct free radical scavenging, upregulation of endogenous 
antioxidant enzymes, and modulation of inflammatory responses. 
This makes ME a promising therapeutic agent for ischemia-related 
brain injuries.32

Toxicological effects of ME
A critical review of the toxicological effects of ME has identified 
significant concerns, particularly regarding its use as an insec-
ticide and in agricultural products. Although ME is an effective 
insecticide with an LC50 of 0.116 µg/mL air, its toxicity poses a 
risk to non-target organisms, including humans and other animals. 
Administration of ME to pigs has been shown to induce myorelax-
ant effects that affect bronchial contraction.33 This suggests that at 
elevated concentrations, ME may impair respiratory function, par-
ticularly in exposed individuals such as agricultural workers who 
are continuously exposed to the substance. Toxic effects are of par-
ticular concern in mammals, as evidenced by a 28-day study in rats 
exposed to ME by inhalation. The study showed significant dam-
age to red blood cells and liver enzymes such as alanine transami-
nase and aspartate transaminase, as well as increases in markers of 
oxidative stress, indicating severe damage to the liver and hema-
tological system. These effects suggest that prolonged exposure 
to ME may compromise vital organs and lead to the development 
of hepatic and hematologic diseases, posing a significant risk to 
exposed workers. In addition, studies in mice have shown that ME 
induces hepatotoxicity, manifested by elevated liver enzymes and 
alterations in hepatic metabolism, particularly in the TCA cycle 
pathways and glutamate metabolism.34 These findings suggest that 
ME may interfere with key biological processes essential for liver 
function. Furthermore, metabolomic analysis revealed alterations 
in metabolic pathways critical for liver function. This suggests that 
ME may disrupt these pathways, potentially leading to significant 
liver damage. A notable finding was the alteration in the gut micro-
biota of mice exposed to ME, which may exacerbate liver damage. 
This is because changes in intestinal bacterial populations affect 
amino acid metabolism and energy production, which can directly 
impact liver function. The exact relationship between changes in 
the gut microbiota and liver damage remains unclear. However, 
this finding suggests that the microbiome may act as a modulator 
of ME toxicity, potentially exacerbating its effects. This evidence 
is of concern because ME is a widely used chemical that persists 
in the environment and can be inhaled by workers, resulting in 
ongoing exposures that can lead to chronic damage, as observed in 
studies in rats and pigs. It is therefore imperative that the regula-

tions governing the use of ME in agricultural products and fra-
grances be reviewed in light of these emerging toxicological data. 
In conclusion, although ME is an effective insecticide, it poses a 
significant hazard to human and animal health, particularly when 
exposure occurs over prolonged periods or at high doses. Hepa-
totoxicity, changes in the gut microbiota, and interference with 
hepatic metabolism are of paramount concern and require further 
investigation and reassessment of product safety and use regula-
tions, accompanied by the implementation of stringent safeguards 
to mitigate public health risks.33–37

Conclusions
ME has been shown to be a promising compound with a number 
of beneficial biological activities, including antioxidant, antican-
cer, and neuroprotective properties. However, the toxic effects ob-
served in in vivo studies underscore the need for regulations and 
more comprehensive investigations to ensure the safety of its use 
in therapeutic and agricultural applications. Further investigation 
of its properties and mechanisms may facilitate the development of 
novel therapeutic approaches while taking into account potential 
health risks. To facilitate the further development of ME in clinical 
and industrial applications, it is imperative that additional stud-
ies are conducted to gain a deeper understanding of its long-term 
effects and the underlying molecular mechanisms. Future inves-
tigations should prioritize the optimization of safe doses and the 
exploration of formulations that minimize the toxic effects of ME. 
In addition, the evaluation of the effects of ME on the microbiota 
and other physiological systems should be a key area of investiga-
tion. The development of derivatives or synergistic combinations 
with other compounds may extend its therapeutic potential. Clini-
cal trials will be necessary to validate its efficacy and safety, which 
may lead to the use of ME in the treatment of diseases related to 
oxidative stress and neurodegenerative conditions.
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